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This article is mainly concerned with the analysis of methods of computation of 
spectral properties of solids. These properties cover a large variety of fields such as 
optical spectra of crystals, phonon effects in superconducting tunneling, infrared ab- 
sorption, X-ray emission, dynamic magnetic susceptibilities, impurity modes, photo- 
emission of electrons, phonon, electron and magnon densities of states, etc. A common 
feature of the calculation of all these properties is integration over the Brillouin zone. 
Five computational methods for performing this integration have evolved and have 
been applied so far. In this article these methods are analyzed for the tirst time on a 
general basis, and particular emphasis is put on resolution, accuracy and computing 
effort. Because of the very broad scope of the subject, a number of relevant problems of 
physical and computational nature are briefly introduced and discussed in a separate 
section. 

I. INTRODUCTION 

In recent years there has been substantial progress in the development and 
application of methods for high-resolution calculations of spectral properties in 
solids. By a spectral property of solids we refer to any property, measured or 
calculated, that yields an “intensity-like” function Z(w), that depends on an “energy- 
like” variable W. The number of different spectral properties in the domain of 
solid-state physics is already large, and it becomes progressively larger with the 
development of new experimental probes, which are capable of producing Z(w) data 
in fine detail. Examples of experiments having this feature in common are inelastic 
scattering of slow neutrons (coherent and incoherent); superconducting tunneling; 
optical transitions in solids; photoemission of electrons; phonon and magnon 
sidebands (vibronic transitions); infrared absorption; nonlinear optics; second- 
order Raman effect; dynamic magnetic susceptibilities; etc. These examples may 
give an idea of the extent to which this present article is relevant to researches in 
solid-state physics. 

Because of the rapid progress in research it is becoming increasingly evident 

* Permanent address after October 31, 1971: Department of Physics, Technion, Haifa, Israel. 

432 
Copyright 0 1972 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SPECTRAL PROPERTIES OF SOLIDS 433 

that computational methods will play an ever more significant role in the evaluation 
of Z(W). We do not intend to present here a survey of the various research areas, a 
task which could well be the subject of a separate review article. Instead, we will 
confine our attention to a few key fields in which high-resolution experimental 
techniques have already reached an advanced stage. 

To make the discussion more coherent it is convenient to estimate the resolution 
in terms of a number N, defined as the range of energies wmarwmrn accessible to a 
given measurement divided by the corresponding energy resolution dw, i.e., 

NW = (Wmax-wmin)/d OJ. (1.1) 

One example for such an advanced technique is the measurement of the super- 
conducting tunneling current Z(V) as a function of the voltage difference V applied 
across an insulating gap [I]. The resolution of V is of the order of 

NW = Vm&l V = 103. 

A second example is the spectroscopy of phonon or magnon sidebands of electronic 
transitions of an impurity embedded in a host insulating crystal [2] (vibronic 
transitions). Typical resolution in this field is about N, = (vmax-vmin)/dv = 102- 
103, where Vmax-Vmin is the frequency range of the phonon (or magnon) band of the 
crystal in question. Another example is the measurement of Ed for optical 
transitions of insulators. Characteristic resolution in these experiment is of the 
order of N, N 102. 

In order to be able to cope with such progress in experimental spectroscopy of 
solids, better methods for calculating spectral properties have to be devised. The 
need for high-resolution computations of Z(U) is by no means widely appreciated. 
As a matter of fact, the technical literature is full of crude computations of Z(W) 
which at best barely expose gross features of these functions. The motivation for 
performing finer calculation is not clear to many researchers and consequently 
they indulge in “simple” and crude calculations of Z(w). One of the strong motiva- 
tions of the present article is to convince researchers in solid-state physics and 
chemistry that these attitudes are wrong and harmful. There are many examples in 
which such crude computations of Z(w) have lowered the quality of their related 
research. This usually happens when significant or peculiar features in Z(w) are 
obliterated by poor computational resolution and high noise level. The following 
reasons and examples are therefore meant to convince the reader of the necessity 
of performing higher-quality calculations. 

1. As mentioned above, the present state of the art in a few experimental 
fields has become very advanced. It becomes, therefore, the task of theory at the 
very least to follow suit. Better still, one should attempt to obtain theoretical spectra 
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that are even one step ahead of the experimental spectra so far as resolution and 
accuracy are concerned. 

2. In many cases theoretical models are ultimately depicted by the spectrum 
Z(w) which is derived from these models. Primitive methods of calculation usually 
add a considerable amount of statistical noise to Z(w) which makes this representa- 
tion somewhat dubious. Moreover, in many cases it is interesting to follow the 
outcome of small adjustments in the theoretical model. Unless the “noise level” of 
the computation is minimal, it may be difficult or even impossible to trace back the 
effects of such adjustments in the spectrum Z(w). 

3. In some cases a theoretical model may predict unusual features such as 
weak infinities [3]. There is an obvious interest in such predictions, but unless fine 
calculations are performed they are very likely to be obliterated and disappear as a 
result of crude resolution. 

4. It is possible that measurable effects may be obtained from accurate 
calculations. A noticeable example is the lattice specific-heat anomaly [4] in 
aluminum which was first discovered by computation [5] and subsequently observed 
experimentally. In this example the anomaly was predicted only because of the 
high quality of the calculation. 

5. Contrary to common belief, high-resolution methods are not complicated, 
and more important, they are very economical in computer time. High resolution 
is only one option that can be exercised. A complementary option is a very sub- 
stantial saving in computer time, which occasionally can be of a few orders of 
magnitudes. In some extreme cases of very lengthy calculations, efficient methods 
are the only way to obtain Z(w) with a reasonable expenditure of computer time. 

6. In some cases it is desirable to obtain phenomenological models which are 
fitted to certain observed spectra Z(w). These models are usually obtainable by 
some iterative procedure of optimizing parameters during the course of which a 
computed Z(w) is fitted to a measured Z(w). Such a procedure requires an efficient 
computational scheme for Z(w) whose main feature is high computational speed. 
This feature is needed because such a calculation can be highly repetitive, and the 
high-resolution methods discussed here readily provide this feature. 

In Section II we introduce the computational problem and describe briefly 
different existing computational methods. In addition, we also discuss a few relevant 
subjects associated with the use of high-resolution methods in theoretical researches. 
In Section III the various methods are analyzed for the purpose of evaluating such 
properties as resolution, accuracy and computing time. In Section IV we discuss 
in brief a selection of various physical and computational problems in a more 
qualitative way. The article is briefly summarized in Section V. 
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II. COMPUTATIONAL METHODS OF SPECTRA IN SOLIDS 

The present work is intended to describe and discuss only computational 
(numerical) methods for calculating spectra in solids. There is another class of 
methods which employ analytical approaches to the same problem [6], but they 
are not discussed at all in this work. Also, the methods that are treated in the 
present context are given only brief descriptions; for better and more complete 
accounts the reader is referred to the original papers. 

The general problem of calculating spectra in solids is associated with the 
evaluation of Green’s functions, or “spectral functions” defined by 

G(w) = hy+$ c F(k)(w - w(k) - ia)-? 
k 

The imaginary and real parts of such functions are given by I(w) and R(o): 

I(w) = + c F(k) 6(w - w(k)) 
k 

and 

R(o) = -$F(k)(w - w(k))-l. 
k 

(2.2) 

(2.3) 

The range of generality of Eqs. (2.1)-(2.3) is considerably wider than solid-state 
physics only. In order to appreciate this point, one should regard these equations 
in a somewhat more symbolic way, that is, not assign specific physical meanings to 
the various symbols. Expressions of similar nature do occur in many branches of 
physics; this is why it may be important to draw attention to their more general 
character. A practical limitation that is required, though, is the finiteness of the 
domain of summation (or integration) for k. For most practical cases it is more 
convenient to treat the integral equivalents of Eqs. (2.2)--(2.3) which are given by 
the transformation 

where V is the physical volume of the system and N is the number of different k 
vectors. To avoid unnecessary complications we hereafter drop the constant 
coefficients and consider the following integrals: 

I(w) = s d3kF(k) &J - w(k)), (2.5) 

R(o) = s d3kF(k)(w - o(k))-l. (2.6) 
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In what follows, R(w) is implicitly meant to be the principal value of the related 
integrals. The evaluation of these integrals is commonly referred to as zone integra- 
tion. 

The interpretation of the symbols in Eqs. (2.5)-(2.6) in the realm of solid-state 
physics is the following: k is a wave vector that is confined in many cases to the 
irreducible part of the first Brillouin zone (IBZ) and is known as a pseudomomen- 
turn. The quantity o(k) is usually the energy of some specific elementary excitation 
in the solid and is ordinarily derived as an eigenvalue of a certain Hamiltonian that 
contains the interaction that gives rise to this particular excitation. Examples of 
these are electrons, phonons, magnons, excitons, etc., in solids. The meaning of 
F(k) can be best understood by noting that in order to observe a spectrum Z(w), one 
requires an external probe into the solid, such as a photon, electron or neutron. 
This probe interacts with the excitations in question and thus gives rise to the 
observed spectrum Z(w). This interaction is characterized by F(k) which is respon- 
sible for the actual creation of the spectrum. The quantity F(k) is known under the 
names of “matrix element,” “transition probability,” “coupling constant,” 
“oscillator strength,” etc. 

The functions Z(w) and R(w) are not independent. They can be derived from one 
another by using the Kramers-Kronig relations, namely, 

and, reciprocally, 

Z(w) = -(l/r) j [R(a))l(ol - CO)] dol. (2.8) 

The numerical evaluation of R(w) from Z(w) and vice versa is usually affected by 
a certain error arising from the poles occurring at 01 = o. This error can be 
rectified by symmetrizing the domain of integration as has been shown recently by 
Sloan and Morawitz [7]. 

A case of special interest is the one for which I;(k) = 1 in Eqs. (2.5) and (2.6). 
For this case Z(o) is the familiar density of states which is commonly denoted by 
g(w). In what follows we focus our attention on g(w) but we denote it by Z(w). The 
reason for this is that most of the discussion presented in this work is readily 
generalized to the case F(Zc) # const and hence the consequences are applicable 
also to Z(w). However, the reader’s attention will be drawn to the cases where such 
a generalization is not so simple. 

The methods described here did not evolve in an arbitrary fashion, but are all 
linked together logically. This becomes clear in the course of the description. 
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Root Sampling (RS) Method 

The first numerical method for evaluating Eqs. (2.2) or (2.5) was proposed and 
implemented by Blackman [8]. Blackman’s motivation for his calculations was to 
prove that departures from the Debye model for the lattice specific heat of solids 
could be significant and measureable. Blackman’s method for solving Eq. (2.2) was 
most simple and straightforward and it is known by the name of the “Root 
Sampling” (RS) method. According to its use, one solves Eq. (2.2) for as many 
different Nk values of k as possible throughout the irreducible part of the Brillouin 
zone (IBZ) and then one sorts out the frequency eigenvalues w(k) into frequency 
intervals defined by (0, w + do), where dw is the interval width. The number of 
frequencies falling within each interval represents I(w). This method, although 
correct and very simple, has very slow convergence. Even by employing present- 
day high-speed computers, it is difficult to obtain energy resolution N, to better 
than N, - IO2 by using the RS method. 

Linear Discrete (LD) Method 

A substantial enhancement in convergence rate was achieved by introducing the 
so-called “Linear Discrete” (LD) method of Gilat and Dolling [9]. The origin of 
this title will presently become clear. The common difficulty in implementing the 
“root sampling” method is in the amount of time consumed in obtaining each 
w(k). The idea behind the “linear discrete” method is to employ the frequency 
gradients Vo(k,) at a relatively small number of different k, vectors and then use 
the linear term in a Taylor expansion about each k, to generate in a rapid manner 
many more values for w(k) in the close vicinity of k, . The net result of this is a 
substantial increase in the sampling size, from Nk values of k, to M * N* discrete 
values of k, where (M - 1) is the number of additional k vectors near each of the 
original k, vectors. Using this method it is a straightforward matter now to increase 
the sampling size by a factor M (A4 - 102-103) without appreciably extending the 
computing time. Although it provides for a major improvement, this method has 
an obvious limitation in being a discrete method. It is shown in Section III that this 
weakness imposes some practical restrictions on the resolution N, as well as on 
the computing time. 

Quadratic Discrete (QD) Method 

A further step in the same direction is to employ the quadratic terms in the 
Taylor series about each k, This enables one to extend even more the range of 
approximation for w(k) in the neighborhood of each k, , which allows for further 
increases in M, and at the same time economizes on Nk . Such a progress was 
actually made by Brust [IO] and Mueller et al. [l l] in the field of electronic band- 
structure calculations, where the evaluation of each w(k) can be extremely lengthy 
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and costly. It is essential in such cases to save as much as possible on NI, . The only 
way, therefore, to obtain reliable calculations of Z(w) is by increasing M as much 
as possible. This method, which is referred to as “Quadratic Discrete” (QD), still 
resorts to sampling-type calculations which essentially are discrete and this is its 
main weakness. Another handicap of the QD method is that it requires six more 
parameters of the symmetric part of the tensor VVw(k,) at each k, , in addition to 
the four parameters of w(k3 and VW&) required by the LD method. This may 
cause some additional computational effort that could be nontrivial in certain 
cases. 

Linear Analytic (LA) Method 

An approach of a different nature was proposed by Gilat and Raubenheimer [ 121. 
In this “Linear Analytic” (LA) Method, the approximation at each k, is kept at the 
linear level, but instead of the discrete nature of the sampling one employs analytical 
(continuous) integration throughout small cells located at each point k, . The 
significant point here is that the contribution to Z(w) coming from each cell is 
represented by a continuous spectral density instead of a discrete set of values, as 
given by the techniques mentioned above. It is shown in Section III that this leads 
to a substantial gain in convergence rate and increases considerably the resolution 
N, for a given mesh number N* . 

Hybrid Method (HM) 

A natural step in the same direction may seem to be the extension of the analytic 
approach to the quadratic method. Unfortunately this is bound to fail, or at least 
at present it is prohibitively difficult. The reason for this is that in contrast to the 
LA method, where one approximates constant energy surfaces near each k, by a 
set of planes, in the quadratic approach these surfaces have to be approximated by 
second-order surfaces. Now, the essential contribution to Z(w) from each integra- 
tion cell located at k, is proportional to the intersection area of a particular constant 
energy surface w(k) = CO and the cell itself. (For details the reader is referred to 
[12].) These areas are readily calculable for planes, but become enormously 
complicated for higher-order surfaces. For this reason it has been so far impossible 
to extend the analytical method beyond the linear approximation. 

It is possible, however, to combine the best features of the “linear analytic” and 
the “quadratic discrete” methods into a “Hybrid Method” (HM). This has been 
recently described in detail by Cooke and Wood [13]. It was also previously 
implemented by Janak et al. [14] and Higginbotham [15]. The way to combine 
these methods together is by employing the quadratic expansion to generate a fine 
mesh of M points about each k, and then apply the LA method separately to each 
minicell which is suitably formed about each of the fine mesh points. 
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FIG. 1. Schematic description of the various methods discussed in the text. In the second 
column the various integration procedures in k space are symbolized. A resultant Z(W) obtained 
from a single cell is shown in the last column for the various methods. The reader’s attention is 
called to the discrete nature of Z(w) given by the RS and the discrete methods in comparison to the 
continuous Z(W) yielded by the LA and the hybrid methods. The gradual reduction in AW in going 
from (a)-(d) is also demonstrated. 

In Fig. 1 we illustrate the various methods in a graphical way. The comparison 
between the methods is purely schematic and no attempt is made to scale any of 
the plots contained in this figure. In the first column on the left the various methods 
are listed. The integration cell is represented by a square centered at k, . The 
method of integration peculiar to each technique is illustrated inside each of these 
cells. For instance, for the discrete methods (linear and quadratic), additional 
M - 1 = 8 mesh points are shown. The LA method is represented by the scanning 
of VU. The “hybrid” method uses M - 1 = 8 subsquares in the same fashion. 
The resultant contribution to I(W) coming from this integration cell is illustrated on 
the right-hand column for each method, where the appropriate length of dw is 
exemplified by a horizontal arrow. This arrow rapidly shrinks to a point by going 
vertically downwards. It is clearly observed how discrete methods contribute 
discrete values (vertical lines) to I(W), whereas analytical techniques give rise to 
continuous spectral profiles about each w(k,) [12]. 

These five methods constitute the numerical techniques for calculating spectral 
properties in solids. Of these, the latter four may be termed “high resolution” 
methods in the sense that they readily provide for N,,, - lo2 or better. Because of 
its seniority and relative simplicity the RS method is still leading in its frequency 
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of use. However, being by far more efficient, high-resolution techniques-the 
LA method in particular-become progressively more competitive. These five 
methods are further discussed on a comparative and semiquantitative basis in 
Section III. 

Apart from the question of comparing the various orders of approximation 
(i.e., the zero-th, linear and quadratic) with one another, there exists a separate 
question which may be of equal importance, namely, how to obtain the various 
parameters Vw(k,) and VVw(k,) which are required for high-resolution calcula- 
tions. 

Before we attempt to answer this question, it should be realized that these 
different parameters are required individually at a different level of precision. For 
instance, it is recommended that w(k,) be evaluated at the highest precision. The 
allowable computational error for VW may be relatively larger, possibly of the 
order of the variations of / VW 1 throughout the integration cell. The values of 
the elements of VVw may be computed to even lower accuracy. These considera- 
tions may facilitate the evaluation of the various parameters within the desired 
accuracy. 

Three methods for calculating these coefficients have recently emerged: 

1. The direct (analytic) method of calculating Vw(k,) and VVw(k,). This 
would obviously be the ideal way to obtain these expressions, but unfortunately it 
is restricted to only a few cases where w(k) is known analytically. For example, 
this is the case for spin waves in ferromagnets of cubic structure where the spin 
Hamiltonian is a scalar (i.e., has a single eigenvalue only.) There are a few more 
cases of more academic interest, such as the one-band tight-binding approximation. 
In most cases of physical interest this approach is inapplicable. 

2. The extrapolation (perturbation) method introduced by Gilat and Dolling 
[9]. According to this idea, one computes the eigenvalue w(k,) as well as the cor- 
responding eigenvector. The next step is to calculate the appropriate Hamiltonian 
at three additional, very close-lying points, namely k, + Bkczez , k, + Skcgey and 
k, + 6k,,e, , where ei are unit vectors along the Cartesian axes. Since 1 6k, / is 
very small relative to ai , the dimensions of the integration cell (i.e., j Sk, / < a,), 
it is possible to use perturbation theory [12] to obtain &w(kJ and hence a good 
approximation for Vw(k,). The term “extrapolation” used for this method origi- 
nates from the fact that w(k) throughout the integration cell is obtained from the 
values of w(kJ and Vw(k,) computed at the center of this cell. 

The main advantage of the extrapolation method is that it by-passes the lengthy 
computation of additional values of w(k) by using the perturbation technique. 
This involves certain approximations which also limit the use of this method to 
first derivatives. i.e., to the computation of Vw(k,) only. Whenever VVw(k,) is 
required, the extrapolation method is inadequate for this purpose. 
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3. The interpolation method. In cases where second-order derivatives are 
required, interpolation may be employed. According to this, the values of w(k,), 
Vo(k,), and VVw(k,)-IO parameters altogether-are found by a least-squares 
fitting solution of a set of equations 

w(k) = 4k,) + qi . Wk,) + 4% . VV4k,) * qi , (2.9) 

where ki is a set of neighboring mesh points to k,(i = l,..., n > 3) and qi = ki - k, . 
Interpolation is useful whenever the computation of the Hamiltonian matrix 
elements is lengthy. The reason for this is obvious; interpolation does not require 
any lengthy computations at additional k values beyond the original Nk mesh 
points and instead it makes use of only the original points in solving (2.9). Therefore 
the values of / q 1 = 1 ki - k, 1 are of the order of the cell sides, i.e., 
1 ai 1 N 1 qi 1 > I 6k, 1 , which differs largely from the extrapolation idea. This may 
cause some concern whenever I VW 1-l becomes very large and sensitive to small 
variations in k, e.g., near “bandcrossing.” This point is further discussed in 
Section IV. 

In describing the various methods of zone integration and the different 
approaches of obtaining the relevant data of VW and VVw for such calculations, 
no attempt is being made here to exhaust this subject. The above methods, however, 
retain a remarkable range of generality which should make them invaluable 
starting points for many relevant calculations. 

An additional point that deserves some attention is the consistent treatment of 
F(k) in Eqs. (2.1)-(2.6) along with the application of the high-resolution methods 
discussed above. The matrix element F(k) is, with only a few exceptions, a smooth 
function of k, so that its linear variation inside each integration cell can be readily 
taken into account in a consistent manner along with the variations of w(k). The 
relevant formulas for F(k) required for the LA method were obtained by Gilat and 
Kam [16]. The effect of including linear variations of F(k) inside each cell proves 
significant in cases where F(k) does vary strongly with k. In a recent article, Dalton 
[17] shows how to obtain in a consistent manner all the expressions required for 
the LA method. 

The problem of evaluating R(w) can be treated in a straightforward and consis- 
tent manner within the context of the linear analytic method, as was shown by 
Gilat and Bohlin [18]. It has also been recently applied to the calculation of 
Watson’s integrals [19]. It is interesting to notice that because of the poles that 
exist in the equation for R(w) [i.e., Eq. (2.3)], discrete methods are not efficient for 
the direct computation of R(w). One can, however, compute I(o) by these methods 
and then employ Eq. (2.7) together with the idea of Sloan and Morawitz [7] to 
obtain R(w) indirectly but with sufficient accuracy. 
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III. CRITICAL ANALYSIS OF METHODS FOR ZONE INTEGRATION 

The main objective of the present section is to generate general criteria for 
comparing the various existing methods of zone integration. Moreover, these very 
criteria are also useful in estimating the optimal resolution and accuracy. Alter- 
natively, by using these criteria, one can also estimate the computing time required 
for a given method to yield results at a given resolution. In order to derive such 
criteria we make a few assumptions which are of a very general character. We 
proceed to treat resolution, accuracy, and computing time in this order. 

Resolution Analysis 

We first observe that in all the methods discussed, the computational scheme 
employs a discrete set of NIc mesh points k, . We now assume, for simplicity, that 
this mesh is regular, i.e., that it forms a periodical “lattice” in k space, where each 
point k, is at the center of a rectangular cell. This particular assumption is made 
mainly for computational convenience, but in principle it can be generalized to 
more complicated meshes, provided that they are not random. We also assume 
that Nk is sufficiently large so that we may neglect the small corrections due to 
mesh points located on the surface of the IBZ. 

Let vBz be the volume of the irreducible Brillouin zone (IBZ), which is l/48 of 
the full zone for cubic crystals. We define 2ai (i = x, y, z), as the sides of each of 
the cells, respectively. The “average” side length 5 is given by 

Next we introduce a quantity Vo representing an estimate for the average value 
of 1 VW 1 throughout the IBZ. This quantity may be defined as 

(3.2) 

but its exact definition is of little practical concern, since the purpose of our present 
use of VW is for making general error estimates. For the same purpose we also 
define an equivalent spherical cell of radius R at each k, , which is equal in volume 
to the rectangular cells, i.e., 

R = 1.24 5 = 0.62 ~$9 Ni1l3 . (3.3) 

Next we follow and generalize the line of argument set by Gilat and Herman [20] 
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to estimate the error for each of the respective approximations used in the various 
methods described in Section II. Let o(kJ be given at the center of each spherical 
cell, and let w(k) be any other value inside or on this sphere. In the “zero-th-order 
method” (root sampling) all the contributions to I(w) coming from this sphere are 
represented by w&). We now expand w(k) in a Taylor series, 

w(k) = w(k,) + q * Vw(k,) + $q * VVw(k,) * q + ... , (3.4) 

where q = k - k, . The leading term of the error SW = w(k) - w(k,) that we 
make by using the RS method can be estimated by the linear term in Eq. (3.4), 
which is roughly 

SW = $-RVw. (3.5) 

In order that the effect of this error be contained in one energy interval dw we 
define an optimal Aw by 

Aw=216wj. (3.6) 

The optimal resolution N, is related to Aw by Eq. (1.1) and is now given in 
terms of Nk by 

$0) = Nl/3 w “0 k 3 (3.7) 

where the superscript (0) denotes “zero-th-order method” (RS), 01~ is given by 

a0 = 0.81 z&;‘~[(o~ - wJVw], (3.8) 

and wBwl is the energy span of any particular band o(k). The numerical value of 
a0 cannot be estimated for a general case, but it is of the order of unity, if the 
volume of the full Brillouin zone is taken to be unity. 

The relation of N,(N,) for the LA method can be found by using similar argu- 
ments. For this purpose we introduce VVw as an appropriate average that represents 
VVw(k) throughout the IBZ. The exact definition of this quantity is of little con- 
cern since it is being used only for the purpose of error estimates. It is therefore 
convenient to use E for this average [21]. The error that we make by employing 
only the linear expansion about each k, is estimated by the quadratic term in 
Eq. (3.4). This error 6w is therefore given by 

6w = +R2VVw. (3.9) 
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The optimal energy interval LIW is given by Eq. (3.6) so that, by using Eqs. (3.3) 
and (3.9) we obtain for the optimal resolution N, in this case 

$1) = p/3 
w 011 k 3 (3.10) 

where the superscript (1) symbolizes the “linear analytic method” and 01~ is given 
by: 

a1 = 2.6 ZI$~[(OJ~ - wJVVW], (3.11) 

where 01~ is of the order of unity, but cannot be evaluated numerically for a general 
case. 

There is a subtle distinction between the two expressions for SW given 
by Eqs. (3.5) and (3.9), respectively. While the error &J given by Eq. (3.5) is 
symmetric about each w(k,), Eq. (3.9) predicts asymmetric contributions to 8w, 
which tend to “shift” o slightly one way or another with respect to w(k,), depending 
on the sign of VVo. As a precaution against such an occurrence which may result 
in a systematic error we choose dw = 26~0, for the latter case. It may be noticed 
that by choosing A w = 6w for this case, one may improve the resolution (i.e., 
increase NJ even further. 

As mentioned above, it is not easy to give accurate numerical estimates for Cal,, 
and 01~ which are for general use. Nevertheless, it is very useful to have such 
estimates, crude as they are, as guides for making practical choices of optimal N, 
or Nk for specific computations. We now attempt to make such estimates, but the 
reader must be strongly cautioned about their limited validity. The coefficient 01~ 
can be estimated from Eq. (3.8). As mentioned above we may choose aBz = l/48 
for cubic symmetry, OBz = l/24 for hexagonal symmetry, etc. The ratio (wz-wJ/Vo 
is more difficult to estimate, but if one uses simpleminded periodicity arguments 
[20], then this ratio can be averaged to give r-l, which yields LX,, = 0.95. By 
applying similar arguments, 01~ is estimated to be 01~ = 3.5. The effect of the number 
of bands n should be also included. It is hard to make an intelligent estimate as to 
how n affects 01~ and 01~ , but it should be noticed that ratio IxJ~, is independent of 
n. We propose to include n in our estimates by observing that w2 - w1 , the energy 
span of the spectrum, should increase with n. Since bands usually partially overlap 
with adjacent bands, it is not unreasonable to assume that wz-w1 increases as n1i2. 
Therefore, we finally conclude that LX,, = 0.95n1j2 and 01~ = 3.5rW. In this connec- 
tion, it is interesting to point out that in many computations that employ the 
RS-method a typical resulting figure is a histogram plot of Z(w), or more often of 
g(w), which has the peculiar feature of highly fluctuating amplitudes. In view of 
the present analysis the reason for this is quite clear. The N, used in many of these 
computations is considerably larger than the optimal N, predicted by Eq. (3.7). 
Typical calculations of Z(w) for Nk = lo3 and n = 4 should yield N, = 20, but 
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in many actual cases that appear in the literature N, is considerably larger, which 
contributes mainly to the noise level. We note in comparison, that under the same 
conditions, (Nk = 103) we obtain N, N 700 for the linear analytic method. In this 
connection we also make the observation that the ratio al/a0 = 3.7 > 1 which 
means that there is an extra factor, which seems to work in favor of the LA method. 
Although it is hard to prove that in general a!JaO > 1, this inequality is supported 
by past experience. 

Comparison of Eqs. (3.7) and (3. IO) shows that the ratio N~l’/N~o’ of the optimal 
resolutions for the LA and the RS techniques, respectively, is 

(3.12) 

which proves to be a net gain of about 40 in resolution in favor of the LA method 
for NI, = 1000. 

The discrete techniques-linear as well as quadratic-can be treated along 
similar lines, although the situation there is somewhat different. For these cases 
the Taylor expansion about each k, is used to generate a fine mesh of new (M - 1) 
points in the vicinity of each k, in addition to the original (gross) mesh of Nk points. 
The effective mesh number N,’ is therefore, 

N,’ = N,M. (3.13) 

If these additional (M - 1) points are ordered on a regular lattice, then they 
can be considered as centers of new and much smaller cells. However, the contribu- 
tion to I(w) of each such new cell is of a single value of w = w(ki), so that it must 
be treated as if it were obtained by a zero-th-order technique. Therefore, the 
appropriate expression for N, is given by Eq. (3.7) with the replacement of Nk by 
N,‘, namely, 

N, = ct0M1'3N;J3 (3.14) 

The net gain in resolution for the discrete methods over the rootsampling 
method is thus exactly M113. The question that naturally suggests itself in this 
connection is “how to choose M?” There are a few factors that have to be taken 
into account in estimating an optimal size for M. An important one is its effect on 
computing time, and this is considered at the end of this section. Presently we 
perform an analysis that yields a value of M which gives an optimal resolution N, 
for a given Nk . We refer to such a value of M as M,, . The following analysis also 
shows the advantage in using the QD method in comparison to the LD method. 

We begin by treating the LD method. Given a gross mesh size Nk we define RI, 
by Eq. (3.3). The error caused by using only the linear term in the Taylor series is 
given by So, in Eq. (3.9). In order that 6 wk be compatible with each of the 
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individual errors SW caused by creating new (M - 1) mesh cells, the following 
inequality must be satisfied: 

SW, < SW. (3.15) 

This relation means that the overall error for the gross cell is at worst no larger 
than each individual error So, so that the cumulative effect of generating a new 
fine mesh is limited to SW. The value of SW itself is given by Eq. (3.5), where R 
measures the linear size of the jine cells. For the purpose of estimating M we 
retain the equality sign in (3.15). By substituting for SW, and SW, respectively, we 
obtain for the LD method 

MOP = WV,, (3.16) 

where TLD is given by 

4%r2 
( ) 

3 

77LD = 3 
% - Wl 

010 vvw . 
(3.17) 

As mentioned before it is hard to give a general numerical estimate for VLD . 
However, by using the crude estimates for the various parameters in (3.17) we 
obtain TLD rv 50. 

The result of (3.16) is perhaps somewhat surprising at a first look, since it 
recommends the increase of M in proportion of Nk whereas the obvious interest is 
to increase M while decreasing Nk . The hidden meaning of (3.16) is, however, of 
limiting nature, and it implies that no gain is made by increasing A4 beyond the 
limit set by Eq. (3.16). By reducing the error SW, that is, by increasing Nk , it is 
possible in principle to make the fine mesh even finer, as (3.16) implies. 

Another important and more obvious result is obtained by substituting M from 
Eq. (3.16) into Eq. (3.14). This yields back Eq. (3.10) which gives the resolution 
N, for the LA method. This means that by choosing the optimum value for M as 
given by Eq. (3.16), we obtain equal resolution for the LA method and the LD 
method for the same number Nk . Such a choice, however, can be rather impractical 
from computer time considerations. The LA method, being intrinsically optimal, 
avoids this handicap and is therefore considerably more efficient. 

The quadratic discrete (QD) method can be similarly handled for optimizing M 
against Nk . We use again Eq. (3.15), but for the QD method So, is given by 

where V3w is an estimate for the average of third-order derivatives and its exact 
nature is of little interest for the purpose of this discussion. Substituting for SW, 



SPECTRAL PROPERTIES OF SOLIDS 447 

and 6w in Eq. (3.18) we obtain the following relation for the Mop of the QD method: 

MOP = rla~N,c~, (3.19) 

where you iS giVen by 

~QD = (%)3( w2gz’ j”. 

Numerical estimate of Ton , although crude, shows that VoD = 8600, which 
must be regarded as too high for practical use. For instance, choosing Nk = 1000 
yields a value of Mop= lOlo for each k, , which is rather awkward even for high- 
speed computers. In actual computations by Mueller et al. [ll], the mesh size 
equivalent to M was of the order of M _N 103, far less than the optimal value of M. 
It should be emphasized, though, that by comparing Eqs. (3.19) and (3.16) we can 
see the advantage of the QD method in comparison to the LD method. For the 
QD method one can considerably reduce the number Nh and increase it4 accord- 
ingly so that N, is preserved. This option is open to the LD method to a much 
lesser extent. 

In treating the “hybrid” method, the resolution N$ is given by 

which implies a significant improvement in N, , benefitting from both Nil3 and 
M2J3. The reader must be cautioned, however, that this approach is perhaps more 
susceptible to systematic errors incurred by the ample use of approximations 
instead of exact calculations. 

The analysis of optimizing M for the hybrid method (HM) may be carried along 
lines similar to those for the LD and QD methods. Again we start off by using 
Eq. (3.15), where 6w, is given by Eq. (3.18) and 60 by Eq. (3.9). Substituting for 
these values, it can be shown that 

Mop = THMN,‘~, (3.22) 

where 7uM is given by 

(3.23) 

The numerical estimate for this case is nuM = 13, making Mop much more 
practical for use than it is for the QD method. We also note the slow growth of 
Mop in (3.22) as a function of NI, . In view of this analysis we conclude that two 
factors tend to favor the HM method in comparison to the QD method. The first 
is its use of analytical integration which is intrinsically optimal and the second is 
that it is considerably easier to optimize M for the HM method than it is for the 
QD method. 
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So far we have concentrated only on the effect the various methods have on the 
resolution N, . It is interesting therefore to adapt a slightly different angle and 
compare the mesh numbers Nk required for two different methods to obtain the 
same N, . This can be done very simply and dramatically for the RS and the LA 
methods. We obtain 

@‘/j@) = &Nii2, (3.24) 

where oi’ is some function of cy,, and a1 , and is of the order 1. A practical meaning 
of (3.24) is that by using the LA method [12] with a commonly used resolution of 
N, N lo2 one may gain at least three orders of magnitudes in Nk in comparison 
to the root sampling method. The numerical values of Nk are closely related to 
computer time as is discussed later. 

Accuracy Analysis 

Closely related to resolution is the accuracy of a given calculation. By “optimal 
resolution” one usually understands that resolution is optimized with regard to 
the anticipated error in the amplitude of Z(w), i.e., with respect to SZ(o)/Z(w). For 
optimum resolution N, , all methods should give Z(w) within roughly the same 
average error 61. We estimate 61(w) by making the observation that in reality the 
computed Z,(w) is slightly different from the exact Z(w) and it is related to it by 

(3.25) 

so that the error in Z,(w) can be estimated by the mean-square deviation of Z,(w) 
from Z(w), i.e., 

iW(w) dw = j”;;-;; [Zc(ci) - Z(a)12 da, 

which yields 

(3.26) 

(3.27) 

to the first order in do. In this analysis we are interested in an overall average of 
(SZ/Z) which may be obtained by using the following steps. 

First we use Eq. (3.27) to obtain an estimate for (SZ/Z), namely, 

@Z/Z) = 0.28 (g/Z) dw, (3.28) 
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and we use the optimized values of dw for the RS and the LA approaches, respec- 
tively. We obtain 

(SI/I) = ,6,,N;1’3 (3.29) 

as an overall accuracy estimate for the RS method. The result (3.29) is also appli- 
cable to the discrete techniques provided Nk is replaced by Nk’ = MN, . For the 
LA method we get 

(61/Z) = ,t?1N;“‘3, (3.30) 

and the same result is applicable to the hybrid method if Nk is replaced by (MN,) 
The coefficients /3,, and PI are not readily obtainable for a general case, as it is 
argued above for 01~ and 01~ . Using Eq. (3.28) we obtain for these 

p. = 0.35 lg<ryr>VW (3.31) 

and 

p1 = 0.095 v;g<(I’p> vvw. (3.32) 

We carry out the numerical estimates for the averages in Eqs. (3.31)-(3.32) by 
making use of the expressions for Z(o) and Z’(w), respectively, namely, 

Gw) = s,,,,=,& 
and 

(3.33) 

(3.34) 

where a/ak, denotes differentiation along the normal to the constant energy 
surface. Next we replace j VW 1 and (a/ak,J VW I by their average values (i.e., 
VW and VVw, respectively) and make use of the numerical estimates we have for 
01~ and 01~ . We finally obtain 

pi = 0.28/a< (i = 0, 1). (3.35) 

The overall error estimate in the amplitude (61/Z) is finally given by 

(SI/Z) = 0.28N,-? (3.36) 

Such a result is expected, since resolution and accuracy are intimately linked. 
In all practical applications of the above considerations about accuracy, special 

caution is advocated for Z(w) at critical values of w. For these points we have 
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for given N, = const. In order to be able to make any coherent estimates, we 
must analyze the relative magnitudes of the various contributing times. For all 
methods T, < T, , and also T,A < Tk although 1-z” is considerably larger than 
T, , which reflects the use of the analytical method in obtaining I(w). For extremely 
large N, (by experience N, N 103-104), TkA may be of the order of Tk . In most 
cases TV Q Tk , which reflects the fact that interpolation (T,QD) and extrapolation 
(TV) techniques are both very useful tools for obtaining I(w). Finally, also TM 
satisfies T, < Tk , but ThD < TM QD because of obvious reasons. However, in 
considering T, , or rather (TM + T,) the important question is whether 
M(T,,, + T,) is small in comparison to Tk . This is exactly the factor that limits 
the size of M and practically could make it considerably smaller than Mop discussed 
above. For the little experience gathered so far it seems that M is restricted by this 
argument to about M ‘v 103-104, which is much less than desired, especially for 
the QD method. This argument certainly limits the efficiency of the discrete 
methods LD and QD. 

The easiest comparison is between the RS and LA methods, and this is practically 
made in Eq. (3.24). Using the notation of Ti we obtain, under the condition of 
N, = const. 

TI&I.A = ~'N;'2KG + T,)/(T, + TV + TEA)]. (3.42) 

This ratio is better than lo3 for N, = 100, and it increases strongly by increasing 
N, . The estimate of TRS/TLD is complicated by the presence of M. It is possible to 
express the Nk values for the RS and the LD methods, respectively, by the resolution 
N, and obtain for equal resolution 

TR&'-LD = MV', + TJIF'~ + TV + MT, + TJI, (3.43) 

where (M - 1) is replaced by M. We first observe that in the limit of M -+ co, 
TRs/TLD approaches (Tk + T,)/(T, + T,), which means that the efficiency of 
the LD method is limited by the ratio 

Mefi = (Tk + TX”, + To,), (3.44) 

in contrast to the LA method which is inherently optimal and hence is not limited 
in such a way. Furthermore, M--f co requires that either TLD ---f 00 or Nk + 0, 
where Nk is the gross mesh size of the LD method. Now, in any high-resolution 
calculation NYC should at least be of the order of a few tens in order to obtain 
reasonably good results. For this reason it is suggested that M be of the order of 
Meif whenever a discrete method is used. The same analysis applies also to the 
QD method with similar results. Optimizing M can be effective only in cases where 
Mop < Meff . If Mop > Meft it is recommended that one use Meff rather than Mop . 



TA
B

LE
 

I 

S
um

m
ar

y 
of

 t
he

 R
el

at
io

ns
hi

ps
 

be
tw

ee
n 

R
es

ol
ut

io
n,

 
A

cc
ur

ac
y,

 
an

d 
M

es
h-

S
iz

e 
fo

r 
th

e 
V

ar
io

us
 

M
et

ho
ds

 
D

is
cu

ss
ed

 i
n 

th
e 

Te
xt

. 
S

om
e 

A
dd

iti
on

al
 

P
er

tin
en

t 
D

at
a 

A
re

 A
ls

o 
In

cl
ud

ed
. 

N
um

be
r 

of
 fi

ne
 

E
qu

iv
al

en
t 

O
pt

im
al

 
In

pu
t 

N
um

be
r 

m
es

h 
O

pt
im

um
 

nu
m

be
r 

of
 

re
so

lu
tio

n 
A

cc
ur

ac
y 

da
ta

 
of

 in
pu

t 

M
et

ho
d 

po
in

ts
 

M
 

R
S

 p
oi

nt
s 

N
o 

N
U

I 
S

IjI
 

M
ep

r 
re

qu
ire

d 
ite

m
s 

O
rig

in
at

io
n 

R
oo

t 
S

am
pl

in
g 

R
S

 

Li
ne

ar
 

D
is

cr
et

e 
D

S
 

Q
ua

dr
at

ic
 

D
is

cr
et

e 

Q
D

 

Li
ne

ar
 

A
na

ly
tic

 
LA

 

H
yb

rid
 

M
et

ho
d 

H
M

 

M
 

M
 

M
 

M
O

P=
?I

LD
N

~ 
N

,=
M

N
, 

T,
+T

w
 

N
w

=+
,(M

N
J’

/” 
.s

f=
po

(M
N

&
1/

3 
M

ef
f=

---
---

 TL
D

+T
 

w
(k

); 
V

W
 

4 
M

 
w

 

M
an

 =
 Q

JD
N

~’
 

N
o=

 
M

N
, 

w
(k

); 
V

W
; 

10
 

vv
w

 

M
~~

=,
,~

N
;I~

 
N

~=
~M

~N
,=

 
N

, 
=a

1(
~~

~)
2~

3 
~=

pl
(M

N
$2

~3
 

M
ef

f=
 

T,
+T

v+
T,

L*
 

T;
D

+T
t;A

 
""

;;;
 

lo
 

w 

B
la

ck
m

an
 

(1
93

7)
 P

I 

G
ila

t-D
ol

lin
g 

(1
96

4)
 P

I 

B
ru

st
 (

19
65

) 
[lo

]; 
M

ue
lle

r 
et

 

al
. 

(1
96

9)
 [

35
] 

G
ila

t- 
R

au
be

nh
ei

m
er

 
(1

96
6)

 [
12

] 

Ja
na

k 
et

 
al

. 

(1
97

0)
 [

14
] 

C
oo

ke
-W

oo
d 

(1
97

1)
 [

13
1 



SPECTRAL PROPERTIES OF SOLIDS 453 

In any event it is meaningless and wasteful to employ values of M much larger 
than Mop . 

There are cases where practical restrictions on computing time are very severe. 
Such is the case when Tk is excessively long. For these cases it is important to 
make Nk as small as possible. On the other hand, Nk cannot be too small if Z(w) is 
to be computed to any acceptable resolution N, . It is exactly for such cases that 
the QD and subsequently the HM methods were devised. Both methods are 
efficient for low Nk , but the latter (HM) supersedes the QD method in the same 
sense that the LA method supplants the LD method [13]. For Nk of the order of a 
few tens it is recommended to choose a value for M which is as close as practically 
possible to Mop given by Eqs. (3.16), (3.19) and (3.22). 

In Table 1 we summarize the information included in the present section. The 
only additional item in this table is the number N, which is the equivalent number 
of mesh points used by the RS method in order to obtain a given resolution N, . 
The appropriate estimate for y in this table is y = 17.0. The number Men is given 
by limM,,(Ti/TRs), and it is the estimate for A4 recommended when high resolution 
is the prime motivation. For the hybrid-method Men , limM=m(7’HM/TLA). 

TABLE II 

Numerical Estimates of Resolution and Accuracy Per Given Mesh Size and of 
Computing Effort (Nk) Per Given Resolution for the Various Methods Described in 

the Text. The Number of Bands is n = 9 for these Examples. 

Root Linear 
Sampling Discrete 
(zero-th) M= 100 

Quadratic 
Discrete Linear “Hybrid” 

M= 1000 Analytical M = 100 

N,,, for given Nk = 1000 30 130 300 1050 4,800 

H/I for Nk: = 1000 1% 0.2% 0.1 % 0.03 % 0.006 % 

Nk for N, = 100 43 500 440 40 30 <l 
(See text) 

In Table II we give a few numerical estimates for Nk and N, . In the first two 
rows N, and SZ/Z are estimated for a mesh size Nk = 1000 for the various methods 
described in this section. Whenever applicable the fine mesh size M is included in 
the appropriate column. The increase in N, is clearly observed in moving along the 
rows from the left to the right. For the case of (61/Z) the reader is reminded that 
this is an overall estimate of the error, and it is not applicable at Van Hove singular- 
ities. In the third row the saving in computing effort (i.e., in NJ is illustrated. For 
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the hybrid method Nk is predicted to be less than 1. This estimate is obviously 
fortuitous, but it is retained as a dramatic demonstration of the efficiency of this 
particular technique. 

IV. ADDITIONAL POINTS OF INTEREST 

The general way in which the various computational methods have been discussed 
in Sections 11 and III may cause the impression that the general problem of cal- 
culating spectral properties in solids is fairly simple, well understood and void of 
difficulties. The objective of the present section is to reverse any such optimistic 
impression. We now try to mention as many difficulties, ramifications, and com- 
plications associated with this problem as space, time, and imagination will permit. 
Moreover, in many instances it is impossible to provide an easy, or even any 
solution to the various difficulties described, and therefore no such attempt is 
included. Tt is also important to notice that the origin and nature of the various 
difficulties is very diversified and no attempt is hence made to organize them in any 
methodical way. There may well be additional relevant points which have escaped 
the author’s attention. 

The first point to be mentioned is the effect of including F(k) in the computation 
of I(w). In most of the discussion of Section III F(k) is set equal to unity. It is 
clear that N, is nearly not affected at all by the presence of F(k) whereas (SZ/Z> may 
be affected to some extent. The effect of F(k) can be taken into account by noting 
that the integrated intensity Ii , given by 

Ii = 
.c 

Z(w) dw = + F F(k), (4.1) 

is directly related to F(k), whereas it is constant for the case F(k) = 1. Therefore 
errors in F(k) contribute mainly to (S1/1). The effect of this may be included by an 
appropriate correction factory, > 1 in the r.h.s. of Eq. (3.36). The effect of F(k) on 
computing time can readily be accounted for by noting that it can be included 
entirely in Tk . This fact makes high-resolution methods even more efficient. 

Another question associated with the inclusion of F(k) is its effect on accuracy 
by considering [16] the linear variations of q . VF near each k, . This is in contrast 
to taking F(k) as constant for each integration cell. According to experience 
gathered with the LA method, inclusion of matrix elements F(k) improves accuracy 
by a factor of 2 or more for Nk N 300. The correction of q . OF is generally 
significant whenever F(k) displays strong dependence on k. As a whole, the effect 
of q . VF is by far less significant than that of q . VW which led originally to the 
development of the high-resolution methods. For this reason it may prove un- 
necessary to include quadratic terms such as q . VVF . q in the calculation of I(w). 
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Associated with the problem just discussed and of broader nature, is the general 
question of how many input items per mesh point k, it is advantageous to provide 
for the computation of I(w). By input data we include w(k,) (1 value), Vw(k,) 
(3 values), VVw(kJ(6 values), F(kJ (1 value) and VHk,) (3 values). This question 
is sometimes of more economical than physical nature, but it could be very impor- 
tant in difficult and lengthy computations. The answer to this question involves 
some estimates of the relative difficulties in obtaining each of these data items. For 
instance, in cases where it is relatively easy to obtain o(k,), it is also easy to obtain 
Vw(k,) and it is possible to adjust Nk suitably to obtain a desirable N, by using 
the LA method. The phrase “relatively easy” may vary largely with taste, available 
computing facilities, budget restrictions, available programs, manpower, etc. In 
cases where it is difficult to obtain w(k,), e.g., when w(k,) is an eigenvalue of a 
large matrix, it becomes important to economize on N* . In such cases the QD 
method, or more so, the “hybrid” method, may be preferred to the linear techniques 
(analytic or discrete). Incidentally, the LD method is included in this discussion 
mainly for the sake of completeness, and for all practical purposes it may be 
regarded as superseded by either the LA or the quadratic methods. 

Users of discrete methods [lo, I 1,221 encountered in the past a peculiar difficulty, 
according to which a certain systematic oscillation in Z(w) occured occasionally if 
the fine mesh around each k, was ordered on a regular (lattice-like) mesh. The 
reason for this is associated with the fixed relation within each cell between the 
“lattice” distance of the fine mesh and the energy interval dw. This behavior is 
peculiar to discrete methods. To avoid this difficulty several authors resorted to 
Monte Carlo (random) calculations for the fine mesh, which naturally smoothed 
out these oscillations. The Monte Carlo technique, however, has very slow con- 
vergence and hence should be avoided as much as possible. This specific difficulty 
is extrinsic to and thus entirely avoided by the LA method. 

A problem which is frequent and significant in many spectrum calculations in 
solid-state physics is associated with “bandcrossing.” It is well known that at high- 
symmetry points, degeneracies of eigenvalues do occur. This results in a phenom- 
enon known as “bandcrossing.” Moreover, a behavior similar to bandcrossing 
may occur whenever two bands approach one another considerably over a small 
portion of the IBZ. We refer to this latter case as “quasicrossing.” The customary 
assignment of bands is given by magnitude ordering and continuity, i.e., by 

q+,(k) 2 q(k) 3 Wi-dk). (4.2) 

This mode of assignment leads to nonanalytic behavior of the corresponding 
eigenvectors / j + I), lj) and 1 j - 1) and the gradients VW~+~ , Vwj and Vwj-1 at 
the point of crossover. For “quasicrossing” the situation is even more serious 
because it occurs more frequently and cannot be predicted by symmetry considera- 
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tions. For this case one experiences strong variations of eigenvectors and gradients 
in the vicinity of such “quasicrossing.” In order to understand the effect of band- 
crossing on Z(w) it is important to study more closely the different methods of 
obtaining VW. The reason for this is that Z(U) and in particular Van Hove sin- 
gularities [23] are very sensitive to the value of / VW 1-l. Now, at crossover points 
the gradient VW is indeterminate and therefore it is desirable to avoid such points 
as much as possible. The extrapolation (perturbation) method [9] of obtaining VW 
avoids most high-symmetry points where bandcrossing occurs by shifting the mesh 
of Nk points away from these points. The quasicrossing regions are less dangerous 
for this method because VW is zero only accidentally and therefore it is highly 
improbable that Vo is exactly zero for an arbitrary k, . On the other hand, the 
interpolation method is more susceptible to such occurrences, since interpolation 
is performed over distances of the size of a gross cell which are much larger in 
comparison to extrapolation. Whenever a quasicrossing occurs interpolation can 
yield too low values for the respective VW and consequently predict spurious 
Van Hove singularities in Z(U). That this actually happens has recently been 
demonstrated by Cooke and Wood [13] in the case of the phonon density of states 
of Cu. The use of interpolation gave rise to an “extra” singularity in this simple 
spectrum. Obviously this can be a reason for serious concern in more complicated 
cases. To examine the situation more closely, we notice that extrapolation differs 
from interpolation by following the trend of the gradient at k, and hence in 
ignoring to some extent the band-ordering convention of Eq. (4.2) in the region 
where bandcrossing may occur. The result of this can be of some mixing of contri- 
butions to Z(w) of different bands. This has very small effect if the total Z(w) is 
computed. In cases where we are interested in a partial Zj(w) due to a single or only 
a few bands, extrapolation is expected to induce a short “tail” of Zj(w) # 0 at the 
band edges. In contradistinction, interpolation relies strongly on the band-ordering 
convention and this may result in too low estimates for 1 VW 1 in regions where 
bandcrossing occurs. Since contributions to Z(w) due to this kind of error do not 
readily compensate out for each other, one may obtain spurious structure in both 
Zj(w) and Z(w) = CjZj(w), The contribution to Z,(w) will probably look like extra 
singularities at the band edges rather than the tails typical to extrapolation. It 
should be emphasized, though, that these errors do eventually converge to zero 
with the increase of Nk . 

The problem of bandcrossing may also affect Z(w) in a different way, through its 
effect on F(k). The reason for this is that F(k) depends strongly on eigenvectors, 
which vary appreciably, or even become indeterminate at the point of crossing. 
The effect of this on Z(w) may therefore depend also on the method of derivation 
of Z’(k). Here, again, such a method may, in principle, be extrapolation 
(I 6q 1 < / a I) or interpolation (I q [ = 1 k - k, I N I a I). Taking into account the 
linear variations of q . VF may improve matters at bandcrossings, although this 
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point has not been studied extensively in the numerical sense. Interpolation may 
provide for second-order terms q - VVF * q in F(k), but this may prove to put an 
additional and rather heavy strain on computing time. 

Another reason for some concern is associated with resolution and accuracy at 
the Van Hove critical points. At these points in k space VW = 0 and this gives rise 
to an abrupt change in dI/do, or even to infinities and discontinuities in I(o), 
especially for a two-dimensional space. As was mentioned above the extrapolation 
technique yields very seldom zero gradients. Nevertheless, the characteristic spiky 
structure of the Van Hove singularities is readily displayed by the LA method. It 
seems likely, though, that amplitudes of sharp spikes may be slightly lowered with 
respect to their real heights due to the averaging process of Eq. (3.25). Another 
feature which is typical to the computation of I(w) using the LA method is the 
small “ripple” near critical points which originates from the Gibbs’ phenomenon 
of Fourier transformations of highly singular functions. 

Another source of error which is well understood is typical to cubic crystals and 
is associated with the fl points ([ 11 l] direction in k space). Because of the 3-fold 
axis of rotation around the [l 1 l] direction, degeneracies that may occur for/l points 
cause the constant energy surfaces to join one another at conal vortices. The effect 
of this has been analyzed [24] and it gives rise to a nonzero component of VW in 
the direction perpendicular to [ill]. This component has cylindrical symmetry 
about [I 111, and it has an effect on measurements of transverse sound velocities 
along [l 1 I] direction as well as on the transverse [l 1 l] phonons measured by 
neutron scattering. The effect of this on calculating I(w) is very limited and can be 
even further reduced by taking into account the transverse components of VW at 
a (1 point. It should be noticed that shifting [9] the mesh of k, , does not solve this 
particular problem, since (1 points are not excluded from the shifted k, . Such a 
shifting, however, can be very helpful for cases when interpolation is used and 
therefore it is now described. A “customary” mesh is generated according to the 
rule 

0 < k, < k, d k, = l/L, (4.3) 

where I = 0, l,..., L, the longest edge of the 1BZ is divided into L equal segments 
and k is given in reduced units. The “shifted” mesh k, is given by 

0 < kc, < kc, < kc, = (1 + 3)/L, (4.4) 

where I = 0, I,..., L - 1. The shifted mesh k, avoids many high-symmetry points 
(i.e., all k points which include any zero component) and hence precludes many 
symmetry-required degeneracies which may complicate the procedure in inter- 
polation schemes. For this reason the shifted mesh is recommended for almost any 
computational procedure of I(w) which uses discrete meshes. It is important, 
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This requires in most cases an extra theoretical effort of calculating the interaction 
of the system with an outside particle that gives rise to the measured I(W). 

In some cases this involves interband transitions, which are characterized by 

Z(o) = C s l(i I 0, lf)l” S(E - EJ S(E - Ef f fiw) d3k 
2 

= F 1 I(i I 0, I f>l” Wi - 4 f fiw) d’k. (4.6) 

These types of spectra can be treated by realizing that differences between eigen- 
values, rather than eigenvalues themselves, must be considered. 

More complicated are the cases which consist of double-excitation spectra, such 
as the second-order Raman effect and nonlinear optical effects. These calculations 
usually require double summations over k space, where the sum of the two relevant 
k vectors may be restricted according to appropriate physical conditions, such as 
the momentum conservation law. The high-resolution methods discussed in the 
present article are all applicable to such cases, but not always in a straightforward 
manner. It is hence recommended that the potential user acquire adequate familiar- 
ity with their various properties in order to apply any one of them in the most 
efficient way. 

Another typical problem associated with the practical applications of these 
methods has to do with the size and the shape of the total integration volume in 
k space. This problem originates from the very nature of F(k) which represents the 
coupling of an elementary excitation of the solid to an outside probe. The operation 
OP describing this coupling does not necessarily obey the crystal translational 
symmetry, which means that F(k + T) # F(k) where ‘c is any reciprocal lattice 
vector. In proper calculations the summations in Eqs. (2.2)-(2.7) must be extended 
over all the zone for which F(k) # 0, and also, possibly, over the star of k. This 
zone is considerably different from (usually larger than) the IBZ. An example for 
this is the calculation of coherent inelastic scattering of slow neutrons from 
polycrystalline powder [29]. The cross-section area for scattering F(k), which gives 
rise to Z(w), is proportional to (k/ko)(k2 + ko2) where k,, and k are the wave vectors 
of the primary and secondary neutrons, respectively. It is clear that neither k, nor 
k are restricted to any symmetry zone of the scattering crystal. Another example is 
the scattering of conduction electrons at the Fermi surface (sphere, for free elec- 
trons). The k vector of the resulting phonon is confined by E;(k) # 0 to a sphere of 
radius 2kF . This is not related to any particular IBZ of the metal. These examples 
may demonstrate the diversity of the problem. It is quite easy, however, at least in 
principle, to incorporate such considerations within the actual calculations as long 
as 



460 GILAT 

which limits the practical size of the integration volume. The requirement of 
Eq. (4.7) is satisfied by almost any conceivable case in solid-state physics. A 
practical way to incorporate this into numerical calculations is by “folding back” 
all the participating volume into a single IBZ. This is accomplished by defining an 
equivalent matrix element Fe(k) by 

Fe(k) = c c F(R * k + 71, 
T R 

(4.8) 

where the CR symbolizes summation over the star of k, fork which is now conlined 
within the IBZ. The C, includes the contributions from all the Brillouin zones 
participating in the transition process. The function Fe(k) is genuinely confined to 
the IBZ and should replace F(k) in Eqs. (2.1)-(2.7) for all practical computations. 

An interesting and also an important example of a spectral property that can 
be calculated by a certain modification of the LA method is the photoemission of 
electrons from solids. In this case a photon with energy rZw is absorbed by the solid 
and an electron of energy E is consequently emitted. The number (intensity) of the 
electrons emitted is a function of two energies and is given by [lo] 

W, w) = c j I+ I M I s>l” W, E) a(~ - w,,(k)) W - En(k)) d% (4.9) 
ns 

where 1 (n [ M / s) I2 is the interband transition probability and P(k, E) is the 
escape probability for the electron. This problem has been recently treated by 
Janak [30] in the context of the LA technique: Janak shows that the contribution 
to I(E, w) coming from a single integration cell is proportional to the length of a 
segment of a straight line confined within this cell. Although it is easy to obtain 
analytical expressions for this case, the boundary conditions are somewhat more 
involved. Computational research which is using this approach is currently in 
progress [31]. 

Incidentally, in his article [30], Janak discusses a few sources of error in the 
LA method. He points out that the linear approximation involves an error of the 
order of b2, where b is the length of the side of a (cubic) integration cell. This is 
consistent with the present arguments developed in Section III. Janak proceeds 
and discusses another type of error, which he claims to be of the order of b and 
which is an area error of the constant energy surfaces S(w(k) = w) that are re- 
presented by planes. On the other hand Janak’s numerical computations indicate 
that this error is considerably less serious, and it appears to be only of the order 
of b2. The reader may convince himself that this is actually the case by the following 
discussion. We express by Z(k, , w) the contribution coming from a single integra- 
tion cell, i.e., 

Z(kc 9 w) = s dS -= 
w(k)=w / vw 1 

(4.10) 
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where q = k - k, , qn is the projection of q along Vw(k,) and hi are suitable 
expansion coefficients [30]. Equation (4.10) gives the impression that an error 
linear in q (i.e., of the order of(b) is made. To show that this is not so, we remind 
the reader that actually not 1((w) is computed but rather&(o), namely, 

&(w) dw = f-1 I(o) dw = j/+, & dw = 11 dS dqn , (4.11) 

where the last integration is carried over a thin layer that contributes to I,(w) dw. 
This integral does not depend at all on j VW [ , which happens to be the source of 
the error of O(b) discussed by Janak. Moreover, when summed up over the total 
volume of the cell, both sides of Eq. (4.11) yield precisely the volume of this cell, 
regardless of what is the exact shape of S. This means that any area error made in 
representing S(w(k) - w) by a plane, must be distributed among neighboring 
energy intervals dw in such a way that its cumulative effect vanishes identically. 

Another important ramification of a general nature is the inclusion of finite 
life-time effects in the computation of I(w). This has been recently treated by Dalton 
and Gilat [32]. In essence, life-time effects are treated by replacing the singular 
function in Eqs. (2.1) by a Lorentzian or any other highly peaked function which 
represents quasiparticles with finite linewidths. Such treatments are quite familiar 
in the anharmonic corrections for phonons and magnons [33] and life-time effects 
for electronic transition. Equation (2.1) can be rewritten, taking broadening effects 
into account, as 

G(w) = -& c @@(w(k) - w - i c (k, co))-’ 
k 

and I(w) = Im G(w). Here we are not concerned with the derivation of C (k, w), 

which is a complex quantity, but rather with its incorporation within the present 
framework of high-resolution methods. This can be done in a straightforward way 
for the LA method by employing Cartesian coordinates [17, 321. By so doing one 
obtains expressions which are similar to those derived for the case of R(w) [18], 
with the important difference that the pertinent variables are now complex. By 
separating out the imaginary and real components of G(w) = R(w) + T(o) we 
obtain the desired expressions of I(W) and R(w), respectively. In many practical 
cases, C (k, w) = d(k, w) + ir(k, w is not sufficiently well known as a function ) 
of either k or w. For those cases C (k, w) is occasionally treated as a constant for 
which d (the lineshift) may be regarded as zero. This approximation may largely 
facilitate the computations. The common result is of smoothing out the typical spiky 
structure of the Van Hove singularities in both I(W) and R(w). Another popular 
but empirical way of smoothing out the singular structure is of using an ad hoc way 
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of convoluting Z(w) or R(w) by a Lorentzian or a Gaussian or another similar 
function. 

In the present work we devote most of the discussion to the computation of 
Z(W) rather than of R(w). The reason for this is that Z(w) is more relevant to many 
practical experiments than R(w). For this same reason more experience has been 
gathered about the calculation of Z(w) than of R(w). In principle the problem of 
high-resolution computation of R(w) is strongly linked with that of Z(w), since it is 
possible to use the Kramers-Kriinig relations to compute R(w) from Z(w). As a 
matter of fact this is the only reliable way [7] to obtain R(w) if discrete methods are 
employed. For the LA and the hybrid methods a direct way for this is available 
[18, 191. The resultant R(w) obtained by this way is of high resolution, and the 
pertinent results listed in Tables I and II are applicable for this case too. The 
calculation of R(w) is required for the study of properties such as the dynamical 
magnetic susceptibility X(W) and the Green’s function associated with the spectrum 
of impurities in solids. 

In conclusion it may be instructive to pose the following question: “Given a 
specific problem, what is the most efficient method to compute Z(w) ?” This question 
certainly cannot be answered in a few words, and in a decisive manner. As a matter 
of fact in many practical computations such a question is not considered at all. The 
harm of this is very little in cases where only crude features of Z(w) are required, or 
when the problem is so simple that any method can do. However, in many cases 
frequently encountered in literature we see computations of very poor quality, and 
the reason for these is that this question is altogether ignored. Obviously in dis- 
cussing this question one must consider one’s available computing facilities, one’s 
available computer programs [34-361 and above all one’s motivation in performing 
the computation. If high resolution is of prime concern, one may prefer the LA 
technique. If, on the other hand, computer time is restricted and it is very difficult 
to obtain each w(k) then the QD method, or more efficiently, the hybrid method 
are recommended. In cases where one is mainly concerned in computing speed and 
VW is readily obtainable, the LA method is again preferable. In almost every case 
the LA method is superior to either RS or the LD methods. The main merit of be preferred. In 

general, Table I can be of considerable help as a guideline for deciding which 
method should be preferred for a specific computation. It should be realized, 
however, that the relative advantage of one method with respect to another may 
be only marginal. Unless the gain in efficiency is substantial, i.e., an order of 
magnitude or more, it may not be worth the trouble of changing to a new method. 
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V. SUMMARY 

In this article we have discussed various methods for zone integration in reci- 
procal space of solids. We point out the necessity and the advantage of using high- 
resolution methods for many computations of spectral properties. These methods- 
the linear analytic technique in particular-have already accomplished striking 
successes in various areas such as optical properties of solids [25, 37, 381, photo- 
emission [30, 311, soft X-ray emission [39,40], superconducting tunneling [41], 
infrared absorption [42], vibronic transitions [43], impurity modes in lattice 
vibrations [44], and phonon [12, 131 and electronic [I 1,451 densities of states. The 
success of these methods in exposing details of I(w) such as Van Hove singularities 
has been emphasized [46]. These methods are also very economical in computing 
time and hence could be the only way to obtain reliable I(w) in extremely difficult 
cases. 

We also conclude that there are two classes of methods, discrete and analytic. 
The general relationships between sampling sizes, optimal resolutions, accuracy 
and computing time have been derived for the various methods in a semiquanti- 
tative fashion. The results are much in favor of the analytic methods. 

In conclusion, we have shown that theoretical researches that require numerical 
computation of spectral properties of solids should consider most seriously the use 
of high-resolution methods in order to obtain results which are of significance and 
reliability. 
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